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Abstract

Four neural network algorithms were examined for
their ability  to adaptively associate stereo camera
coordinates with joint positions of a three degree
of freedom manipulator arm in a 3D reaching task.
Given reasonable numbers of training exemplars
for an implementation in real hardware, all
networks trained to significant errors. Two
secondary error correction procedures were then
tested. Both further reduced errors, but one method
that depended on continuous visual and
proprioceptive feedback to train a small set of
associative weights that correlated joint and
camera velocities was especially effective in
eliminating errors. Stereo pan, tilt and vergence
information was used to direct ballistic reaching,
but relative depth information, was used for the
visual feedback of end-effector velocity in the
second error correction method.

1 Introduction

The problem addressed in this study is the one of
directing the end-effector of a robotic manipulator
arm onto a visually located target. This control
problem is part of a larger issue in sensor-motor
coordination. The problem is common to both
natural systems (i.e. animals) and artificial systems
(i.e. autonomous robots). It is now widely
appreciated that this is a difficult problem because
the systems are non-linear, the kinematics can be
unknown, there can be excess degrees of freedom
offering nonunique solutions, and the available
state information can contain errors [Kawato,
1990; Oyama et al. 1991].

This problem is only important to the extent that it
is desirable to have an autonomous robot that can

see and manipulate objects in its environment. If
we wish to replace man in some industries where
the costs of labor exceed the benefits, then this and
similar problems of sensor-motor coordination
must be solved. According to Dickerson et al.
[1990] material handling, including assembly and
logistics contribute more to manufacturing costs
than do any other activity. One way to reduce
labor costs is through automation, yet the
automation of material handling will depend on a
solution to machine camera-manipulator
coordination. One of the difficulties with camera
control of a manipulator is establishing and
maintaining the calibration of the two systems
[Korde et al., 1992]. This is the first objective of
the present work.

1.1 Non-adaptive Solutions

Because of the non-linearities the most common
non-adaptive approach to camera-manipulator
control is to partition the problem space in many
smaller spaces and approximate solutions using
linear control functions [Baker and Farrell, 1990].
While this piecewise linear approach minimizes
the errors, it does involve a lot of human planning,
processing, and fine tuning. Another inherent
problem is that accuracy is limited to resolution;
that is, to the size of the pieces into which the
problem is broken. Most problematic is that the
parameters of the functions are static when defined
in advance of performance. Changes in system
dynamics or kinematics will invalidate the
parameters. Other non-adaptive methods of
solution are variously available [Bennett et al.,
1989; Hou and Utama, 1991] but still what is
needed is the ability to meet unknown or
unexpected changes in system dynamics or
kinematics. We, therefore, turn to adaptive
methods to define system kinematics and
dynamics. These methods should demonstrate both
stable learning of statistically significant
relationships and short-term sensitivity to
perturbations [Baker and Farrell, 1990].

1.2 Adaptive Solutions

Several researchers have already addressed the
issue of adaptive camera-manipulator coordination
[Coiton et al., 1991; Cooperstock and Milios,
1993; Hou and Utana, 1991;  Kuperstein and
Rubinstein, 1989; Mel, 1990; Li and Ogmen,
1994; Oyama et al., 1991; Ritter et al., 1988].
Generally, the objectives of these studies have



been to define the inverse kinematics of the system
through experience with system performance,
incorporating the effects of unknown factors that
frustrate modeling and prediction. The three most
common algorithms used in the learning
controllers have been Back Propagation (BP), the
Kohonen Self-Organizing Map (SOM), and a third
method, encompassing a variety of methods, that
involved the partition, usually explicitly, of the
work space, and the assignment of different
parameters to govern the mapping when operating
within each partition. This last category of
methodology is similar in concept to the piecewise
linear approach taken by non-adaptive solutions.
The adaptive advantage of the third approach is
based on the way in which the parameters of each
sector are established.

The circular reaction learning protocol was widely
used in these studies. This protocol allows a form
of unsupervised learning that none-the-less takes
advantage of the presence of a desired output as a
reference for learning. In circular reaction
learning, the manipulator arm randomly assumes
configurations that bring the end effector into
view. For each configuration of the manipulator,
the vision system locates the end effector, and
correlations between joint variables and camera
variables are learned. After the correlations are
coded in connection weights, the input of camera
position information resulting from a visually
located target can evoke joint positions that will
bring the end effector onto the target,
approximating solutions to the inverse kinematics. 

Several groups, dissatisfied with the degree of
accuracy obtainable from the coarse coded
representations of visual space and joint space,
implemented additional error correction methods
to fine-tune the visual control of end-effector
location [Cooperstock and Milios, 1993;
Kuperstein and Rubinstein, 1988; Ritter et al.,
1989; Li and Ogmen, 1994; ]. Some of these
methods were themselves adaptive. Kuperstein and
Rubinstein [1988] attempted to correct the original
weights that associate the joint positions with the
visual coordinates of the target. Ritter et al [1989]
trained additional weights to represent the first
derivative of the function relating joint angles to
the visual coordinates. Closed loop visual
feedback is necessary for these methods of
correction.

2 Current Work

The present work evaluates four neural network
learning algorithms and two methods of secondary
error correction on a model of visual-motor
coordination in three dimensions. Functions that
relate activity on log-polar transformations of the
stereo visual input to camera and arm motor
commands are introduced.

2.1 The Model

A drawing of the configuration of manipulator arm
and stereo cameras that was used in the
simulations to test the algorithms is shown in
Figure 1. The cameras are mounted on a stereo
pan, tilt, and vergence mechanism that provides
data on these three camera orientation parameters.
The three active joints of the manipulator arm:
shoulder rotate, shoulder elevate, and elbow bend,
determine end effector location, which is acquired
by the vision system. The joints are restricted to
motions through 180 degrees. 

          

camera:
   pan
      tilt
        vergence

∆

arm:
    bend
        rotate
            elevate

Figure 1. Configuration of manipulator arm and stereo
cameras in simulation.

2.2 An Explicit Look-up Table Method

Probably the simplest way to produce joint angles
from camera angles is to store sets of angle data
recorded from the joints and pan/tilt/vergence
mechanism when the camera is focussed on the
end-effector. Then, given any camera focus point,
the stored camera angles that match most closely
the current values can be found, and the associated



joint angles may be recovered. Of course, the more
sets of angles that are stored, the more likely it will
be that any given camera focus point will have  a
stored joint set close to its actual joint set.

To assess the accuracy of the look-up table method
using the arm-camera model of Figure 1, N pairs
of correlated joint angles and camera angles were
randomly generated and stored. Then M pairs of
new joint angles and camera angles were randomly
generated and tested against the stored pairs. The
error was measured by the end effector location
disparity between the stored location and the
location resulting from the new configuration.
Results for N = 4000, 1000, 250, 100, and 62 and
M = 1000 are shown in Figure 3.  If one has the
patience to record 4000 positions of the arm and
camera, an average error of 3.3 cm in end effector
location can be expected for a manipulator arm
similar to the model of Figure 1 when matching
new camera orientations with the stored values and
moving the arm to the correlated and stored joint
positions. Practically, many fewer positions can be
acquired using hardware in a reasonable amount of
time. The results of Figure 3 establish a standard
that must be bettered by any algorithm that
attempts to calculate joint angles given camera
orientation for ballistic reaching to a visually
identified target.

2.3 Neural Network Methods to Direct
Ballistic Reaching

We studied four neural network methods to see if
joint angles could be produced given camera
orientation with greater accuracy for a given size
of training data than that which could be achieved
with a simple look-up table. The four methods
were: 1) a three layer perceptron with back
propagation learning (BP), 2) a Kohonen self-
organizing map to generalize correlations of joint
angles and camera angles (SOM), 3) a two layer
perceptron with delta rule learning and
preprocessing using vertex normal features
extracted from the joint and camera parameters
(PVN), and 4) a two layer perceptron with delta
rule learning and population coding using a
geometric distribution of the joint and camera
parameters (PPC). 
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Figure 3. Averages of M distance errors of end effector
from target using look-up tables of N stored vectors.

2.3.1 Back Propagation

We used a simple form of back propagation
(Figure 4) taken from Rumelhart et al. (1986). The
input layer contained 3 elements, one for each
degree of freedom of the stereo cameras. There
was one hidden layer of 7 elements. The output
layer contained 3 elements, one for each joint. The
input and training data were normalized to their
range. A threshold element provided input to both
the  hidden  and  output  layers through modifiable
connections that were trained as the other
elements. The constant threshold bias was set at
0.5. The learning rate was set at 0.05. A
momentum factor was not used. Weights were
initialized to random numbers between -0.05 and
+0.05.
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Figure 4. Three layer perceptron with back propagation
learning. Connections between the input and hidden
layer and between the hidden and output layer are

modifiable.



2.3.2 Kohonen Self-Organizing Map

The Self-organizing map algorithm that we used
(Figure 5) closely paralleled that described by
Kohonen [1990]. The input vector was composed
of the three joint angles and the three camera
position angles for pan, tilt, and vergence. All data
were normalized to their range. After creation of
the map, joint angles were recalled by finding the
best match for the three input vector elements
belonging to the camera angles, and then reading
off the three matched weights belonging to the
joints. The dimensions of the weight matrix were
16*16*6. Weights were initialized to random
numbers between -0.01 and +0.01.
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Figure 5. Kohonen self-organizing map. All processing
elements receive a copy of the input. After completion
of the learning phase, the element, whose camera
portion of the input weight vector best matches the
camera input, is selected. The joint portion of its input
vector is taken as the output. The dimensions of this
figure are reduced from those used in the simulation for
clarity of presentation.

2.3.3 Vertex Normal Features

The two layer perceptron with delta rule learning
and preprocessing using vertex normal features
was developed in this lab to remove the need for
back propagation of errors during learning.
Recognizing that the weights between the input

layer and the hidden layer in a three layer
perceptron with BP learning essentially create
feature filters of the input space, the use of a
preprocessor that provides this feature extraction
process would eliminate the need for one layer of
modifiable weights. This should greatly increase
learning rates in the remaining pathway between
hidden layer and output. 
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Figure 6. Two layer perceptron with vertex normal
feature preprocessing. Only connections between the
input and output feature layers are modifiable. 

The preprocessor was a vertex normal
representation of the input [Williams, 1986]. The
vertex normal representation is similar to the
functional link architecture [Klassen et al.,1988],
and to the higher order unit of Fahner [1990], but
completely characterizes the input space. In the
present application, the three input variables for
camera orientation were transformed to eight
features by first normalizing each to unit length,
then taking all joint products among the variables
and their complements. The eight features for
camera orientation were (1.0-p)*(1.0-t)*(1.0-v),
p*(1.0-t)*(1.0-v), t*(1.0-p)*(1.0-v), p* t*(1.0-v),
v*(1.0-p)*(1.0-t), v* p*(1.0-t), v*t*(1.0-p), p* t*v. 

Joint angles were also submitted to the vertex
normal  preprocessor. Mapping was accomplished
by correlating, using the Delta Rule, these two sets
of features through 64 modifiable connections. For
the output, the predicted set of features were



recombined by a process that is the inverse to
feature creation. The learning rate was set to 1.0.
Weights were initialized to 0.0. Figure 6 shows the
network for this process. 

2.3.4 Population Coding

We developed a second method of feature
definition that partitioned the scalar input values
into vectors of processing elements. One method
of partitioning is to explicitly represent the 3D
work-space with a 3D matrix of elements [Coiton
et al., 1991; Li and Ogmen,1994]. This, however,
results in a large matrix that can require substantial
processing. Instead we represented each joint and
camera angle by a small number of processing
elements, each element maximally sensitive to
particular angle, with sensitivity falling off as the
angle differs from this preferred value. Elements in
the vector share activity in proportion to the
proximity of the value to their positions in the
vector. Figure 7 demonstrates this process. 
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Figure 7. Population coding of joint position on a five-
element pool. Each element has a center angle to which
it is maximally sensitive.

In the present application, after normalization to its
range, each variable was partitioned into a vector
of 5 elements. A three dimensional matrix,
containing 5*5*5 elements, was constructed for
each set of input and output vectors. The activity
on any element in the matrix is the product of the
activities of the vector elements that intersect upon
it. Each input angle vector will have almost always
two active elements, thus the input matrix will
have 8 active elements, resulting from the three
dimensional intersection of the contributing
vectors. 

Matrices were formed for both joint and camera
variables. A weight matrix associated the two.

Weights were initialized to 0.0. Connection
weights were trained using the common Delta
Rule with learning rate set to 1.0. After a period of
training, the output matrix could contain many
active elements with any given input vector.
Reconstruction of each output vector was
accomplished by summation over all other
dimensions of the matrix for each element of the
output vector. Reconstruction of the individual
variables was accomplished by taking the vector
sum of the elements in each output vector. A form
of population coding is achieved by this method.

2.4 Methods for Secondary Error
Correction Under Continuous Visual
Feedback

Two methods were explored for fine sensor-motor
control under visual feedback. The first is related
to the procedures of Kuperstein and Rubinstein
(1988) which we call Error Compensation (EC),
while the second is related to procedures of Ritter
et al. (1989) which we call Visual Servo Control
(VSC).

2.4.1 Error Compensation

For the method of Error Compensation, after the
conclusion of the ballistic reach, the vision system
executed a saccade to the end effector and
calculated the motor command that would have
occurred if the target and not the end-effector was
at that location. Generally the difference in the
original and second motor commands can be used
to correct the original motor command and
improve target reaching. The correction, if
successful, may be saved by modifying the
weights by the error in motor commands given the
end effector coordinates.

2.4.2 Visual Servo Control

In the method for Visual Servo Control a second
set of nine weights were trained to associate
changes in joint angle with observed changes in
end-effector position relative to target location.
Each weight associated the expected change in
joint position with change in end-effector location
on either the x, y or z axes. The weights were
modified by randomly perturbing the joint
positions after conclusion of the ballistic reaching
and noting the change in end effector location with
the change in joint position. If the end-effector was



closer to the target than before the perturbation,
the weights were increased, if not, the weights
were decreased. The joint position was corrected
by the product of its end-effector location and the
associated weight.

3 Simulation Results

3.1 Ballistic Reaching

All algorithms were trained and tested under the
same conditions, except for learning rates, which
were optimized for each algorithm. The method of
circular reaction was used for training. One
hundred correlated pairs of joint and camera
parameters were generated and presented to the
networks for 1000 repetitions during learning.
Afterward, 100 new correlated pairs of joint and
camera parameters were generated. The camera
orientation, measured as pan, tilt, and vergence,
was acquired by allowing the vision system to
saccade to the target [Blackburn, 1993]. The
camera orientation information was passed
through the network weights to produce joint
configurations. The end effector locations of these
new configurations were then compared with the
locations correlated with the input camera
orientations, and an error was calculated as in the
look-up table method. 

Table I shows the relative performance of the four
neural network algorithms along with the look-up
table method. The average distance errors in
centimeters for these 100 test trials are given.
Simulation time is provided for a relative
comparison of the computer time required to train
the  networks.

The relative errors and training times listed in
Table I are relevant only to the present task and
training conditions. Back propagation trains slowly
and was disadvantaged by the 1000 cycle limit
during training. Given 300,000 cycles of the same
input data, back propagation reduced the average
error to 5.13 cm. The 1000 repetitions of the
training data actually impaired the performance of
the PPC network compared to its average error
after 100 training repetitions of only 5.54 cm.

Table I

Average Errors in Ballistic Reaching

Algorithm error   time # weights

Look-up 10.8   0:06    N/A
BP 13.4   1:05       52
SOM    8.9 14:19   1536
PVN   5.7   1:11       64
PPC    7.8   2:30 15625

3.2 Secondary Error Correction

The data in Table II were acquired under
somewhat different conditions from the data in
Table I. Because in a hardware implementation the
robot would be required to be operational for all of
the learning involving visual feedback of end-
effector position, the number of trials used in our
simulation training was reduced to 1000 single
presentations of random exemplars. After training,
the algorithms were tested with 100 additional
random trials without additional learning.

Table II

Errors in Reaching after Secondary Correction

Algorithm before error after error # wts

PVN + EC 9.72 8.55 0
PPC + EC 4.37 2.82 0
PVN + VSC 9.92 0.15 9
PPC + VSC 5.00 0.33 9 

Using the EC algorithm, modifications to the
weights that influence ballistic reaching are not
always successful, and seem to depend upon the
network that learned the ballistic reaching task.
Improvements to the PPC performance of
approximately 40% are possible, yet the weight
modifications do not work at all with the PVN
network. When using the PVN model, the EC
algorithm can reduce ballistic reaching errors if the
weights are not modified by the process. The
improvement in PVN performance with unsaved
EC modifications to joint position was 23%.
The VSC algorithm worked well with both the
PPC and PVN networks, reducing errors to less
than 0.5 cm on the average after training on the
1000 reaching trials. 



4 Discussion

In depth perception for eye-hand coordination at
close range (i.e. at arm’s length) both absolute
depth information for the target and relative depth
information for the hand in the vicinity of the
target are important. The target is acquired and
maintained on the center of the receptor surface by
saccadic and pursuit eye movements. The absolute
depth of the target, estimated by the degree of
vergence, initiates and sets the amplitude of the
ballistic reach. As the end-effector approaches the
target, it enters the visual field. Then the position
of the end-effector relative to the target tells the
system how to correct the error to capture the
target. 

We must consider the application of the adaptive
control algorithms to real hardware. One of the
first problems encountered using hardware that is
not obvious with simulations is that the visual
identification of the target is noisy. A second
problem is that the hardware, manipulator arm as
well as cameras moving on a pan/tilt/vergence
mechanism, require a finite amount of time to
execute movements. Thus a large number of trials
with moving equipment will consume a lot of
time. Fortunately, the algorithms do not require a
physical repetition of each configuration on each
cycle. Once a representative number of correlated
joint configurations and camera orientations have
been performed and saved in a data file, the
networks can be trained off-line, with the hardware
asleep. The PPC algorithm requires the least
amount of off-line training while BP requires the
most. 

Both BP and SOM are sensitive to initial
conditions, that is, the connections weights must
be set to small random values. This initial
randomization biases the sensitivities of the
network elements to the input pattern. Some initial
conditions result in better performance than do
others. The optimal initial conditions must be
determined empirically at present. PVN and PPC
are intialized with zero weights, yet these networks
can be trained from any set of  initial weights.
Learning in those two-layer perceptron networks
depends only upon the performance error. This is a
distinct advantage when retraining is necessitated
by some change in the kinematics or calibration of
the system.

The EC method of secondary error correction can

proceed in parallel with the ballistic error
correction procedures as long as the end effector is
accessible to the vision system. Learning is slowed
by this procedure, however, due to the
requirements that the manipulator arm must
actually move and the cameras saccade to the end
location on each learning trial.

The VSC method also requires that the arm move
and be observed, thus potentially slowing the
learning process. However, the VSC method of
secondary error correction can progress quite
independently of the ballistic reaching network
and its training. Learning can progress in two
stages. First, after collecting the sample of
representative target locations and arm
configurations, ballistic learning can continue off-
line. Second, after the ballistic learning stage, the
VSC learning can be accomplished on-line with a
relatively small number of trials.

The question of the optimal algorithm and training
conditions is obvious. If memory is limited the
look-up-table methods, including the PPC model,
are inappropriate. If on-line adaptation is required,
SOM and BP are inappropriate. Repetition of a set
of exemplars improves BP and PVN performance,
but this is not practical if the EC algorithm is used
additionally. The best ballistic reaching is
achieved at the lowest cost using the PVN
algorithm without any additional error correction
procedure, allowing many silent repetitions of the
input data. The best additional error correction
procedure is the VSC algorithm which works well
independently of the ballistic reaching as long as
the end-effector is located in the vicinity of the
target and its relative velocity can be determined. 

It is instructive that the surest method is to fill a
large array of correlated pairs of joint and camera
angles, then look up the best match, or best eight
matches, during recall, and interpolate or average
the results. It may be that all of the neural
networks achieved success by essentially this
procedure. Surely, those that partition the input
space such as SOM and PPC do so. But even
accuracy in back propagation learning is known to
depend upon the appropriate number of hidden
layer elements. No one has yet been able to specify
what that number should be for all applications,
but it may relate to the degree of non-monotonicity
of the input variables, that is, its nonlinearity. The
hidden layer, by representing features, partitions
the input space. Thus, the hidden layer selects the



output weights that belong to the particular
function that describes the relationships of the
variables in their current range. The Kohonen
SOM does this as well. We could argue that this is
the role of feature detectors in general
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